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A SIMPLIFIED TECHNIQUE FOR PHASE CONTROL
OF CONFORMAL ARRAYS

INTRODUCTION

Conformal-array antennas offer many advantages over conventional planar arrays or
reflector antennas. However, they are more difficult to design and implement. One of
the most important problems is controlling the element phases for beam steering. Theo-
retically, it is possible to compute the phase distribution necessary for each element to
point the beam in a required direction, but if the required hardware or software are dif-
ficult and expensive to implement, then this distribution and theory have no significance.
The conformal arrays investigated in the past have generally had simple shapes, such as
the cylindrical and conical arrays. The techniques developed to control these arrays
depend on the properties of their particular shapes. In this report, a simplified approxi-
mate technique is described for use in controlling the steering phases of conformal arrays
on a general surface. The technique is to divide the conformal array into several sub-
arrays. By judiciously locating the elements on the curved surface, the conventional
row-and-column phase setting can be used within each subarray, although each subarray
requires an additional phase shift to compensate for the phase difference caused by its
position on the curved surface. However, this correction is much simpler than that re-
quired for a conventional conformal array in which each element requires this compen-
sation. Because of the approximate nature of the technique, some phase errors are intro-
duced. However, for a given array size and shape of the conformal surface, the number
of subarrays can be chosen such that the phase errors are within a specified limit. Ana-

lytical and computed results (phase errors, relative gain, and radiation patterns) are
obtained for the arrays on circular and parabolic curves using the technique described
here. The results are compared with those of the exact techniques, and they show that
in many practical cases the approximate technique described here, which simplifies the
hardware and software necessary for the phase control of the conformal arrays on a gen-
eral surface, can be used with negligible degradation in array performance.

PHASE CONTROL OF CONFORMAL ARRAYS

The complexity of controlling the element phases to scan the beam of a conformal
phased array increases greatly as the geometry of the conformal surface becomes more
complex. The following examples in two dimensions illustrate the point.

The simplest case is a uniformly spaced linear array like that shown in Fig. 1. The
phase needed at element n to scan the beam to an angle to, from broadside is given by

On = Knd sinfp (1)

Note: Manuscript submitted December 26, 1974.
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where

K = the free-space wave number

n = the element number

d = interelement spacing

sp, = scan angle from broadside.

< ~~WAVEFRONT

d .

Fig. 1 - Geometry of a uniformly spaced linear array, scanned
to an angle 0, from broadside

Note, from Eq. (1), that the phase of each succeeding element can be obtained by
adding Kd singp to the preceding element phase. Thus, this excitation may be imple-
mented simply with a single adder at each element and a generator for Kd sink0 .

The next level of complexity is a circular array with uniformly spaced elements.
The array configuration is shown in Fig. 2. The phase needed at element n is given by

= KR cos -(n-i)2 (2)

where

R = radius of curvature of the circular array

n = element number

,00 = beam-pointing direction

N = total number of elements in the circular array

K = free-space wave number.

2
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WAVE FRONT

n

Fig. 2 - Geometry of a uniformly spaced circular array, scanned
to an angle 01

From Eq. (2) it is clear that the phase needed at each element can be obtained only
by calculating cos [(p, - (n - 1) 27r/NJ for each element. Thus, there are N times as
many calculations as in the linear-array case.

Now, consider an array on a general two-dimensional curve, as shown in Fig. 3.
Let the position of the element n be given by (xn, Yn). The phase needed to scan the beam
to an angle (p, is given by

On = K (Xn cosf 0 - Yn sin(p0) (3)

where

K = free-space wave number

(PG = beam-pointing direction

(Xv, Yn) = position of element n.

From Eq. (3) it is seen that the calculation of the phase needed at each element is
more complicated for a general conformal array than for a circular array, since it in-
volves the evaluating Xn cos(po and Yn sin(po and adding them up for each element.
The cost of the hardware and software to implement this configuration could make the
system impractical.
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RAO AND HSIAO

Fig. 3 - Geometry of a conformal array on a gen-
eral surface, scanned to an angle 4o

SIMPLIFIED PHASE-CONTROL TECHNIQUE

It has been shown [1] that for a limited scan angle and for large radius of curvature
of conformal surface, the radiation pattern may be scanned by using the simple well-
known technique of linear array phasing when the array elements are judiciously located
on the conformal surface as discussed below.

Fig. 4 - Geometry of a conformal array whose ele-
ments are projected onto a plane surface and scanned
to an angle spo using linear array phasing

Consider a general two-dimensional conformal array, as shown in Fig. 4, with its
elements phased in such a way that the wave emanating from the array is a plane wave
traveling in a given direction po,. Approximately, this can be thought of as a projection
of the elements on some plane surface, as shown in Fig. 4; linear array phasing is then

4
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applied to the projected elements. If the elements are located on the conformal surface
so that they have equal interelement spacing in the projected plane, we have an equiva-
lent of a uniformly spaced linear array in the projected plane. Now, the beam may be
scanned by using the simple well-known technique of the uniformly spaced linear array.
What this approximation means is as follows: If the element n is located at (Xn, Yn),
the phase it needs to scan the beam to (p, is approximated by

Osn = K (Xn -Yn sinkp) (4)

instead of the exact phase given by Eq. (3). The first term KXn in Eq. (4) is a constant
phase (not dependent on scan angle (po) that corresponds to the path length (shown as a
dotted line in Fig. 4 ) between the actual and projected element positions. The second
term KYn sin(po corresponds to the linear array phasing.

From Eqs. (3) and (4) one can obtain the amount of phase error introduced by the
approximate method in element n. This is given by

en = O3n- n = KXn (1-cos(P 0 ). (5)

From Eq. (5) it may be noted that the phase error becomes zero when (PO = 0.
The phase error increases with an increase in (p, or X,. Therefore, if (p, or X, or both
are small such that en is not appreciable (say less than 7r/4), the approximate phasing
can be used with negligible degradation in array performance. However, in many prac-
tical cases these conditions will not be met. In those cases it is still possible to use the
linear array approximation if the conformal array is divided into several subarrays, as
shown in Fig. 5, and the approximation technique is applied to individual subarrays. The
effect of this is to decrease phase errors en by decreasing Xn. Equations (3), (4), and (5)
can be used with each subarray if Xn, Yn, and (po are measured in subarray coordinates.
In addition to the element phases, an additional phase (which depends on the scan angle)
is required in each subarray to compensate for the phase difference caused by its position
on the curved surface. However, this correction is much simpler than that required for
a conventional conformal array in which each element requires this compensation. To
obtain more insight into the approximate phasing technique and its usefulness, the next
section is devoted to the application of the technique to conformal arrays on circular
and parabolic curves.

WAVE FRONT Fig. 5 - Geometry of a large conformal
array divided into subarrays. Each sub-

I I I I I I I 0/ / / / /- array is scanned to obtain a beam at an
angle S0 using linear array phasing
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APPLICATION OF THE SIMPLIFIED TECHNIQUE

The simplified technique for phase control of conformal arrays discussed in the previ-
ous section is quite general and could be used for arrays on any conformal surface.
However, with no loss in generality, the technique will be applied here to conformal
arrays on circular and parabolic curves, illustrating the usefulness and the limitations of
the approximate technique.

Conformal Arrays on a Circular Arc

To reduce back lobes and high side lobes caused by the directivity of individual
elements, usually only a part of the full circle is activated at any one time. Therefore,
in what follows, it is assumed that the active part of the array is on a circular arc with an
arc angle (PA that is less than or equal to 1800. Let the array be divided into M equal
subarrays, with (Ps being the subarray arc angle that is also equal to (PA /M, as shown in
Fig. 6. The subarray centers (or reference points) are assumed to be on the circular arc
and can be shown to be at the angles given by

(Pm (m -=- )P= m 1,2, ... ,M (6)

from the array broadside.

/~~~~~ ~~CENTER OF
SUBARRAY, m

Fig. 6 - Geometry of a circular arc array divided into equal subarrays

To obtain some insight into the amount of element phase error introduced by the
approximate phasing and how the phase errors depend on the radius of curvature R,
the number of subarrays M, and the total array size, first consider a single subarray m
as shown in Fig. 7. The subarray coordinates are represented by Xs and Y5, with the

6
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CENTER

WAVE FRONT

Fig. 7 - Geometry of subarray m scanned to an angle
(om from its broadside direction

subarray center as the origin. The elements on the subarray are located so that when
projected onto the Y, axis they have equal interelement spacing Dys8 which is assumed
to be known. If (Y8,, X5,) is the location of element n whose angular position from
subarray broadside is given by Om, then the following relations are satisfied:

Ysn = R sin (Psn

(7)
XIn = R (1 - cos Osn)-

If the subarray broadside direction is (Pm with respect to full array reference coordi-
nates, as shown in Fig. 7, then to scan the complete array to an angle (P, means that the
subarray m should be scanned by an angle Pom = (Po - (Pm from its broadside. Therefore,
the exact phase Vomn and the approximate phase Qomn needed at the element n of the
subarray m to point the beam to an angle (p, can be obtained from Eqs. (3) and (4) by sub-
stituting Xs,, for Xn, Ysn for Yn, and orn for (oo. They are given by

OPomn = KR [(1 - COs5(sP) cos(pom - sin(sn sin(oon] (8)

and

komn = KR (1 - cos(sn) - sinp,, sin(poml . (9)

The phase error introduced by the approximate method in element n of the subarray
m can be obtained by taking the difference between Tomn and O"omn* It is given by

7
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emn = KR (1 - cs0p,80 ) (1 - cospom). (10)

The normalized phase error emn/KR is plotted in Fig. 8 as a function of (Psn with
(Pom as a parameter. As can be noted from this figure, the normalized phase error in-
creases very rapidly as (Psn and (Pom are increased. It is instructive to note that no phase
error is introduced in the element located at the center of the subarray, and the error
increases as the element's angular position increases, the maximum error being introduced
in the end elements of the subarray, whose angular positions are given by ±(PSN. Also,
it may be noted that the element phase errors in the subarray are symmetrical about its
center. What this means is that the beam-pointing direction is not affected by the phase
errors, but there will be some decrease in array gain depending on the amount of phase
errors. However, there may be some shift in the beam direction if the array elements have
directive patterns. This will be discussed later.

IL)

E 0.8 _E

a 0.7 SCAN ANGLE 961om=90
0
fl 0.6 -
w
tw 0.5 -
V)
< 0.40.4 

0 0.3

N 0.2 -

0.I 
0

0 10 20 30 40 50 60 70 80 90

ELEMENT POSITION IN DEGREES, Osn

Fig. 8 - Phase errors in circular arc arrays when the linear array
phasing method is used for beam scanning

For the circular array under consideration, the M subarrays are similar except for their
angular positions (Pm with respect to the array broadside. Therefore, Eqs. (8), (9), and (10)
can be applied to all the subarrays by using the correct value of (Pm. From Eq. (10) it may be
noted that the phase error in any subarray depends not only on the element's angular posi-
tion (s, but also on its scan angle (pom. The maximum phase phase error occurs in the end ele-
ments of the subarray whose scan angle (Pom is maximum. In reference to the maximum value
of Pm, it is proper to say a few words on the way the circular array is scanned to cover 00 to
360 . It was mentioned earlier that only a part of the full circle is activated at any one time,
and the active part occupies an arc angle (PA that is divided into M subarrays with each sub-
array arc angle Ups. These M subarrays are used to scan the beam over an angular range of

8
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-ps/2 < (pQ < (p,2, using the approximate phasing technique discussed earlier. To cover
other values of fp, an appropriate segment of the circle should be chosen as the active
part of the array. For example, to cover the scanning range (p,/2 < Po, < ePs, the sub-
array 1 is switched off, and the subarray M+1 is switched on. Note that the maximum
value of I (porn I = I p - (Pm I corresponds to the subarrays farthest from the center of the
active part of the array. It can be shown very easily that

PorM I max = 2A * (11)

The maximum value of (Psn corresponds to the end elements of each subarray and
is equal to ((P,/2) = (scA /2M). Thus,

[ (Psn | max = (PA /2M. (12)

Substituting the maximum values for (Psn and (orn from Eqs. (11) and (12) into
Eq. (10), one obtains the maximum element error when the approximate phasing technique
is used. This is given by

Emax=KR (1-cos2M ) (1-cos )2 (13)

It should be clear that this maximum phase error is introduced only in the end
elements of the subarrays that are farthest from the array center when the beam is
scanned to ±(ps12 from the array broadside. For the other elements in these subarrays
and for all the elements in the other subarrays the phase errors are smaller than emax.

Several interesting results can be obtained by using Eq. (13). The first result is to
find the maximum subarray size L, (arc length R(P5) that can be used for given values of
R and (PA such that the maximum phase error emax will not exceed a specified value.
Equation (13) can be rewritten as

emax = KR [1 - cos (Ls/2R)] [1 - cos (spA /2)] . (14)

Solving equation (14) for L, gives

Ls= 4R sin- (emax /2 KR [1-cos ((PA /2)]. (15)

In antenna theory [2] and practice a phase error of 7r/4 (corresponding to a path
length error of X/8) is considered to be acceptable. Our results, given later in the report,
prove this to be true. Substituting emax/K = X/8 in Eq. (15) gives

L = 4R sin- 1 ( c /1 (16a)4fjR /) [I -COS (PA /2)]

9
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If (R/X) [1 - cos ((PA /2)] > 1, which is satisfied in many cases of interest, Ls can
be approximated by

Ls t~ fR_,' /2 / sin ((PA /4). (16b)
From Eq. (16b) note that the maximum subarray is proportional to the square root of the

radius of curvature for a given array arc angle (pA. As shown in Fig. 9, the subarray size Ls is
plotted as a function of R with OA as a parameter, using Eq. (16b). If R and (PA are known,
the curves in Fig. 9 can be used to find the maximum subarray size that can be used to limit
the maximum phase errors to 450 or less.

ci)

0-J
w
:Nc

m

10 100
RADIUS OF CURVATURE, R (X)

1000

Fig. 9 - Maximum subarray size as a function of radius of curvature
and arc angle for maximum path-length error of ./8

Equation (13) can also be used to obtain the relation between the minimum number
of subarrays needed as a function of R and the array size (specified by arc angle WoA or
arc length LA = R(pA) such that the maximum phase error emax will not exceed a speci-
fied value. Equation (13) can be rewritten as

sin2 (4M ) = (emax/2KR)l [1 - cos ((PA /2)] . (17)

10
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First taking a square root and then the sine inverse on both sides of Eq. (17) readily
shows that

( PA- 1
4 sin-l I Vmax/2KR [1 -cos (9pAI2)1}-

For (emax/K) = X/8, Eq. (18) becomes

(18)

(P ~A ~ ~ 1

4 s- 1 {1/4 sin (pA /4)1

Using the same approximation as used in obtaining Eq. (16b), one obtains

M (PAJO R sin (PA/ 4 ) .

(19a)

(19b)

Equations (19a) and (19b) are used to plot the number of subarrays M as a function
of R with (PA as a parameter. The number M is plotted in Fig. 10. As can be noted
from this figure, the value of M needed increases with the increase in R for a given
(PA and increases with (PA for a given value of R. These curves can be used to find the
minimum number of subarrays into which the active part of the array is to be divided
such that the maximum phase error emax will not exceed 450 for a given array size
specified by R and (pA.

100

m

coD

U-

Lu
M

zi

10 12 100
RADIUS OF CURVATURE,R (IN WAVELENGTHS)

1000

Fig. 10 - Number of subarrays as a function of radius of curvature
and array arc angle for a maximum path-length error of ?V8
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When the array size is specified by the arc length LA = RpA instead of arc angle
(pA, M can be expressed as a function of LA and R by replacing (PA by LA IR in Eq. (19a)
and (19b) as shown in Eqs. (20a) and (20b):

LA ff
4R sin 1 {1/4 - sin (LA M4R)-

M; LA r2sn L /R 

(20a)

(20b)

The number of subarrays M as a function of R with LA as parameter is plotted in
Fig. 11. From this figure it can be noted that the number of subarrays needed decreases
with increase in R for a given value of LA. This is intuitively obvious, because as R is
increased, keeping LA constant, the curved surface becomes more and more flat and
coincides with a linear array as R - .

KU)

m
Cr

n

U)
L.0
Cr
wd
M

z

10 100
RADIUS OF CURVATURE, R (X)

1000

Fig. 11 - Number of subarrays as a function of radius of curvature and
array arc length for a maximum path-length error of 7X/8

So far the discussion has been concentrated on the element phase errors introduced
by the approximate phasing technique and on how these phase errors are reduced by
increasing the number of subarrays into which the conformal array is divided. Also,
methods have been discussed for finding the minimum number of subarrays (or maximum
subarray size), when the radius of curvature and the size of the conformal array are
given, such that the maximum element phase error does not exceed a specified value.
Now, it is of interest to formulate the expressions for radiation patterns using exact and

12
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approximate phasing, so as to assess the effect of phase errors on the radiation patterns
and the relative gains.

Equation (8) gives the expression for the correct element phases necessary in subarray
m to scan the beam to an angle (oo from the array broadside. The reference point of
these phases is the subarray center. To add the contributions of all the subarrays, it is
convenient if the reference point is moved to the center of the circle. Thus, if the center
of the circle is referenced, the correct element phases are given by

'fomn = lkomn -KR cos (Pom- (21)

Substituting the value of 4/omn from Eq. (8) into Eq. (21), one obtains

'Yomn = -KR cos ((po - (pm - (Psn) * (22)

Since (Pm + (Psn represents the angular position of element n in subarray m, measured
from the broadside direction of the circular array, the expression given in Eq. (22) coin-
cides with the well-known result [3] of the circular array element phase necessary to
scan the beam to an angle (po. If the nth element pattern in subarray m is given by
Emn((p), then the radiation pattern of subarray m is given by

N

Fm = E Emn (so) eA(7mn+Yomn) (23)

n=1

where

'Ymn = KR cos (p-pm - sn)* (24)

Since the reference point is the same for all the subarrays, the radiation pattern
of an active circular arc array composed of M subarrays can be obtained by simply
adding all the subarray patterns and is given by

M M N

F() =E Fm = E E Emn e0) iKR [cos (a - fm - hsn)-Cos (O-msn )] (25)
m=1 m=1 n=1

If exactly the same procedure is used, the radiation pattern can be formulated when
the approximate phasing is used by simply replacing 4Iomn with T/omn in Eq. (21) and
following the same steps used in obtaining Eq. (25). If F(ep) represents the radiation pattern
obtained by using approximate phasing, it is given by

M N
F((P) = E. () KR [COS ( -m-Of'sn)-cos0sn-Sln (fOdom)sinfsn+1 COS(Go0o m)]

m=1 n=1 (26)

13
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A computer program was developed to obtain the radiation patterns by using Eqs. (25)
and (26). A circular arc array with an arc angle (PA = 900 and a radius of curvature
R = 12X is taken as an example. For this example, note from Fig. 10 that the number of
subarrays M = 3, indicating that the array should be divided into at least three subarrays
to use the approximate phasing method such that the maximum phase error will be less
than 450 (path length error of X/8). However, to show clearly the effectiveness of re-
ducing the phase errors by increasing the number of subarrays, the computed results
will be given when the array is divided into 1, 2, and then 3 subarrays. In all the cases
considered, the element pattern is assumed to be a cosine function with the peak of its
pattern directed along the surface normal, where the element is located. For the circular
array under consideration, the element pattern maximum will be in the radial direction.
Thus, the element pattern is given by

Emn((O) = cos ((P - (Pm - (Psn) * (27)

The number of elements and the element locations are determined in the following
manner. Knowing the arc angle of the subarray and the radius of curvature, the projec-
tion of the subarray on the Y, axis (see Fig. 7) is given by L p = 2R sin ((p./2) = 2R
sin ((P'A I2M), where (p'A is obtained from the relation 2R sin ((P'A /2) = 2R sin ((PA /2) + 0.5X.
If Lp is known, the number of elements N can be chosen such that the interelement
spacing Dys = LP IN is around 0.5X. This procedure allows the end elements to be lo-
cated at a distance DY,/2 from the subarray endpoints and eliminates the possibility of
locating the end elements of neighboring subarrays on top of each other. Once Dy. is
known, the nth element position Y,,can be found. Then, from Eq. (7), the angular
position eps, can be found.

For M = 1, (PA = 900, and R = 12X, the number of elements, N is 35, and the
interelement spacing Dys = 0.499X. The computed radiation patterns are shown in Fig. 12a
to 12g for several scan angles using correct and approximate phase steering. Note that
as the scan angle is increased the radiation patterns obtained by the approximate phase
steering deteriorate, and the beam-pointing direction deviates from that of the patterns
obtained with the correct phase steering. The reason for these effects is that the maximum
phase error is 450 at a 17.50 scan angle and increases rapidly with the increase in scan
angle. These phase errors decrease if the array is divided into several subarrays.

For M = 2, (PA = 900, and R = 12X, the number of elements in each subarray is
given by N 19, and the projected interelement spacing D = 0.5X. The total number
of elements in the two subarrays is 38. For M = 3, (PA = 90°, and R = 12X, the number
of elements in each subarray is given by N = 13, and the projected interelement spacing
is given by Dys = 0.495X. The total number of elements in the three subarrays is given
by 39. Note that the number of elements needed is increased slightly with M because
the total projected aperture increases with M. For M large, the projected aperture ap-
proaches the value R(PA. The radiation patterns for the cases of M = 2 and 3 are shown
in Figs. 13a-13f and 14a-14f, respectively. From these figures it may be noted that, when
M is increased to three, the radiation patterns obtained by approximate phase steering
are quite close to those obtained by correct phase steering even for scan angles as large
as 600. The decrease in phase errors and the corresponding improvement in array per-
formance as the number of subarrays M is increased from one to three can be seen more

14
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clearly from the gain loss curves shown in Fig. 15. In the actual implementation, the
active part of the array is scanned to only ±(ps/2 (ips = the subarray arc angle) and the
proper subarrays are switched on and off to cover the scanning range of 00 to 3600.
When this switching and scanning of the subarrays is used, the loss in gain of the conformal
array due to approximate phase steering is as shown in Fig. 16 for M = 1, 2, and 3. As
may be seen clearly, the array performance is improved considerably as M is increased
from 1 to 3.

-3
27

-3

LYE

-~~ ~ ~ -~~--~~ WITH CORRECT PHASE STEERING
WITH APPROXIMATE PHASE STEERING

60 Iiii 1IIIIIIIIIIIiiIIII44IIIIIIHII I I I]I I I I I II I [iII IIlIii I TF7 7 I 4IIs 111 44I Ii - IIIHIr
-90 -70 -50 -30 -10 10 30 50 70 90

RNGLE FROM BPORDSIDE (DEGREES)

Fig. 12a - Broadside radiation patterns of a circular arc array, arc angle
OA = 900, and radius of curvature R = 12X
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X*-*X - WITH CORRECT PHASE STEERING
- WITH APPROXIMATE PHASE STEERING

0 -70 -50 -30 - l 0 1 0

RNGLE FROM BRORDSIDE[DEGREES)

Fig. 12b - Radiation patterns of a circular arc array scanned to 100,
arc angle OA = 900, and radius of curvature R = 12?
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Fig. 12c - Radiation patterns of a circular arc array scanned to 200,
arc angle OA = 90°, and radius of curvature R = 12X
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Fig. 12d - Radiation patterns of a circular arc array scanned to 300,
arc angle OA = 900, and radius of curvature R = 12X
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Fig. 12e -Radiation patterns of a circular arc array scanned to 40°,
arc angle OA = 900, and radius of curvature R = 12X
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Fig. 12f - Radiation patterns of a circular arc array scanned to 500,
arc angle OA = 90°, and radius of curvature R = 12X
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Fig. 12g - Radiation patterns of a circular arc array scanned to 600,
arc angle OA = 900, and radius of curvature R = 12X
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RNCLE FROM BPORDSIDE(DEGREES)

Fig. 13a - Broadside radiations patterns of a circular arc array divided
into two subarrays, arc angle OA = 900, and radius of curvature R = 12X
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Fig. 13b - Radiation patterns of a circular arc array divided into two sub-
arrays and scanned to 100, arc angle OA = 900, and radius of curvature
R = 12X
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Fig. 13c - Radiation patterns of a circular arc array divided into two sub-
arrays and scanned to 200, arc angle OA = 900, and radius of curvature
R = 12X
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Fig. 13d - Radiation patterns of a circular arc array divided into two sub-
arrays and scanned to 250, arc angle OA = 90°, and radius of curvature
R = 12X
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-50 -30 -lo 10 30 50

UNGLE FROM BRORDSITE(DEGREES)

70 90

Fig. 13e - Radiation patterns of a circular arc array divided into two sub-
arrays and scanned to 400, arc angle 'A = 90°, and radius of curvature
R = 12X
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Fig. 13f - Radiation patterns of a circular arc array divided into two sub-
arrays and scanned to 600, arc angle OA = 900, and radius of curvature
R = 12X
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Fig. 14a - Broadside radiation patterns of a circular arc array divid-
ed into three subarrays, arc angle 'hA = 900, and radius of curvature
R = 127
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Fig. 14b - Radiation patterns of a circular arc array divided into
three subarrays and scanned to 100, arc angle 'A = 90°, and radius
of curvature R = 127K
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Fig. 14c - Radiation patterns of a circular arc array divided into
three subarrays and scanned to 15°, arc angle OA = 900, and radius
of curvature R = 121\
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Fig. 14d - Radiation patterns of a circular arc array divided into
three subarrays and scanned to 200, arc angle 'hA = 900, and radius
of curvature R = 127
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RNGLE FROM BRORDSIDE(DEGREES)

Fig. 14e - Radiation patterns of a circular arc array divided into
three subarrays and scanned to 400, arc angle OA = 900, and radius
of curvature R = 12X
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Fig. 14f - Radiation patterns of a circular arc array divided into
three subarrays and scanned to 600, arc angle OA = 900, and radius
of curvature R = 12X
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Fig. 15 - Loss in gain in a circular arc array due to phase errors introduced by
simplified phase steering when the array is divided into M subarrays; arc angle
OA = 90° and radius of curvature R = 12X
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Fig. 16 - Loss in gain in a circular array due to phase errors introduced by sim-
plified phase steering along with subarray switching to cover 3600 scanning
range; active arc angle OA = 90° and radius of curvature R = 1 2X
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Conformal Arrays on a Parabolic Arc

Conformal arrays on a parabolic arc are considered as a second example in applying
simplified phase control. The array under consideration is shown in Fig. 17. The para-
bolic curve is defined by the equation

y2 = 4fX (28)

where f is the focal length of the parabola.

D

Y

Fig. 17 - Geometry of a conformal array on a
parabolic curve

Even though the principle of applying the simplified phasing technique to a para-
bolic arc array is simple and straightforward, the general analytical treatment given to a
circular array that is divided into M subarrays cannot be extended to the parabolic arc
array, since the circular symmetry no longer exists. Therefore, the parabolic arc array is
treated separately when it is divided into one or two subarrays, respectively.

Figure 17 is applicable when the parabolic arc is considered as one subarray. If the
element locations are given by (Xv, Yn) on the parabolic arc, then the correct and approx-
imate element phases needed to scan the beam to an angle so, from broadside are given
by Eqs. (3) and (4). If En(<O) is the nth element pattern, the array patterns F(ep) and F(ep)
obtained by using correct and approximate phasing, respectively, are given by

N

F() = E

n=-N
En (sP) eiK [Xn (cost-cosn 0o)-Yn (sing-sinq, )]

N

F(p) = E En (eP) eiK [Xn (coso-1)-Yn (sinp-sinp)]

n =-N

(29)

(30)
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In Eqs. (29) and (30) it is assumed that there is an odd number of elements in the
array, given by 2N + 1. Similar equations can be obtained if there is an even number of
elements in the array. Now, the problem is to find Yn, Xn, and En (p) for the parabolic
array under consideration. Yn can be looked at as the projected element location on the
Y axis. Therefore, the Y, values are chosen such that the projected interelement spacing
is a constant (say Dy). In other words, IYn -Yn-1 = Dy. By substituting Yn for Y
in Eq. (28), one can obtain the value of Xn. Therefore,

Yn = nDY

and

Xn = Yn 2 /4f = n2 D 2 /4f . (31)

As in the case of the circular array, we assume that the element pattern is a cosine
function with its peak value directed normal to the conformal surface, where the element
is located. For the parabolic arc the element pattern becomes

En (P) = cos (p - atn) (32)

where

an = tan- 1 (Yn/2f) = tan- 1 (nDy/2f).

Knowing the array parameters DY, N, and f, one can find Yn, Xn, and En (qp) using
Eqs. (31) and (32) and substitute them in Eqs. (29) and (30) to find the radiation patterns.
In addition, if the values of Xn are known, Eq. (5) can be used to estimate the element
phase errors introduced by the simplified technique. If the maximum phase error exceeds
a specified value, the array must be divided into subarrays before applying the simplified
technique. The analytical treatment of dividing the parabolic array into several subarrays
becomes very complicated and will not be undertaken. However, dividing the array into
two subarrays will be formulated to show the effectiveness of subdividing the arrays.

Figure 18 shows the parabolic array divided into two subarrays. The projected
aperture of the array on the Y axis is assumed known and is given by 2 YA. The array
coordinates are given by X and Y. A coordinate system for one of the subarray coor-
dinates is given by Xs and Ys, as shown in Fig. 18. It can be seen from this figure that
the subarray origin is at (X', Y') in the X, Y coordinate system, with Y' = YA /2 and
X' = Y' tana, where af is the angle between the broadside directions of the parabolic
array and subarray, as shown if Fig. 18. It is given by tana = Y' /2f. The projected
aperture of the subarray on the Y. axis is given by YA /coscx. If Ns is the number of ele-
ments in the subarray, then the elements are located on the subarray so that they have
equal interelement spacing, given by Ds = (YA /cosa)/N. The reason for dividing by
Ns rather than Ns- 1 is to locate the end elements at D,/2 from the subarray endpoints
rather than at the endpoints, as shown in Fig. 18. This procedure eliminates the possi-
bility of locating the end elements of the two subarrays on top of one another. If
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AT / YS
S

Fig. 18 - Geometry of a conformal array on a parabolic
curve, divided into two subarrays

D. and N8 are known, it is fairly straightforward to determine Y.,, the Y. coordinate
of the nth element in the subarray. If Y,, is known, the X. coordinate of the nth element
X8n can be found (see Appendix A) and is given by

Xsf = Y, + + Si + n2 . (33),n tanca 2 sin 3 a/

If the subarray element locations (Y 8n, X8n) are known, the required phases to steer
the-beam to an angle soo from array broadside (angle So0 - a from subarray broadside)
can be obtained from Eqs. (3) and (4) by substituting X8 n for Xn, Y8n for Yn, and
so1 = o -a afor poO. Therefore, the correct and approximate patterns of subarray 1
with its origin as the reference point are given by

N

E 1 =>, En (so) elK [Xsn (cosW-cosip0 1 )-Y5 n (sinp-sinqp,,0 )]

n=1

and

N

Esl = E 1 (so) elfK[Xfn (cosq0-1)-Yn (sine-singed)]

n=1
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Where, Eni is the pattern of the nth element in subarray 1 and is given by

Eni (sO) = Cos (so - an) , (36)

where

n= tan- 1 (Yn/2f)
(37)

Yn Y' + Ysn cos a -Xsn sinc .

Note that subarray 2 is the mirror image of subarray 1 with respect to the X axis.
It is not difficult to show that the correct and approximate patterns of subarray 2 with
its origin as the reference point are given by

N

Es2 = Z En 2 (so) elK [X8 n (coSnp-COsq 01 2 )+Ysn (sinb-sinmpO 2 )] (38)

n=1

N8

ES2 = Ad En2 (sO) dK [X8 n (cos'-1)+Y 8 n (sine-sinw 0 2 )] (39)

n=1

where

En2 = cos (so + an) (40)

'Po02 = soo + a (41)

and an is given by Eq. (37).

To obtain the parabolic array pattern in the X, Y coordinate system, we add the sub-
array patterns vectorially, with the midpoint of the two subarray centers as the reference
point. These patterns are given by

Ffl) = ES1ejKY' (sinp-sinmp)+ E e-jKY' (sinqp-sino0 ) (42)

and

F~p)=Es jKY (sinfp-sinkp)+ - 2 -jKY' (sinko-sink,)
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where F(sp) and F(so) are the correct and approximate parabolic array patterns when the
array is divided into two subarrays.

A parabolic arc array with f = 4X and the Y-axis projected aperture of 9X is consid-
ered as a numerical example. If the array is approximated by a single subarray, the
projected interelement spacing D = 0.5X, the number of elements in the array 2N + 1 = 19,
and the element locations are defined by Eq. (31). Correct and approximate radiation
patterns are computed using Eqs. (29) and (30) and are shown in Figs. 19a to 19g. From
these fig ures it may be noted that the patterns obtained by approximate phase steering
deteriorate as the scan angle is increased above 300, and the beam-pointing direction
deviates more and more from those patterns obtained by using correct steering phase
as the scan angle is increased. The reason for this is that for this example the maximum
phase error is 450 if the scan angle is 25.70, and it increases as the scan angle increases.
It will be shown later that there is a corresponding loss in array gain. Therefore, if the
array needs to be scanned to more than 300 from broadside, the array should be divided
into subarrays. The radiation patterns are computed from Eqs. (42) and (43) when the
array is divided into two subarrays and are shown in Figs. 20a-20g for several scan
angles. As can be seen from these figures, the array patterns with approximate phase
steering coincide very closely with those obtained by using correct phase steering. The
decrease in phase errors and the corresponding improvement in array performance when
the array is divided into two subarrays can be seen more clearly from the gain loss curves
shown in Fig. 21.
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Fig. 19a -Broadside radiation patterns of a 19-element array on a para-
bolic arc: projected aperture on Y axis, 9.O1X; focal length of the para-
bola, f = 4?'
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Fig. 19b - Radiation pattern of a 19-element array on a parabolic arc,
scanned to 100 from broadside: projected aperture on Y axis, 9.07X; fo-
cal length of the parabola, f = 47
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Fig. 19c - Radiation patterns of a 19-element array on a parabolic arc,
scanned to 200 from broadside: projected aperture on Y axis, 9.07K; fo-
cal length of the parabola, f = 47
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ANGLE FROM BRORDSIDE(DEGREES(

Fig. 19d - Radiation patterns of a 19-element array on a parabolic arc,
scanned to 300 from broadside: projected aperture on Y axis, 9.0X; fo-
cal length of the parabola, f = 47
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Fig. 19e -Radiation patterns of a 19-element array on a parabolic arc,
scanned to 40° from broadside: projected aperture on Y axis, 9.O1X; fo-
cal length of the parabola, f = 4),
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Fig. 19f - Radiation patterns of a 19-element array on a parabolic arc,
scanned to 5Q0 from broadside: projected aperture on Y axis, 9.07K; fo-
cal length of the parabola, f = 47
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Fig. 19g - Radiation patterns of a 19-element array on a parabolic arc,
scanned to 600 from broadside: projected aperture on Y axis, 9.0X; fo-
cal length of the parabola, f = 47K
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Fig. 20a - Broadside radiation patterns of an array on a parabolic arc,
divided into two subarrays: 10 elements in each subarray; projected aper-
ture on Y axis, 9.07K; focal length of the parabola, f = 47K
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Fig. 20b - Radiation patterns of an array on a parabolic arc, divided into
two subarrays and scanned to 100: 10 elements in each subarray; pro-
jected aperture on Y axis, 9.0X; focal length of the parabola, f = 47
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Fig. 20c - Radiation patterns of an array on a parabolic arc, divided into
two subarrays and scanned to 200: 10 elements in each subarray; pro-
jected aperture on Y axis, 9.0?'; focal length of the parabola, f = 4X
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Fig. 20d - Radiation patterns of an array on a parabolic arc, divided into
two subarrays and scanned to 30°: 10 elements in each subarray; pro-
jected aperture on Y axis, 9.OX; focal length of the parabola, f = 4X
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Fig. 20e - Radiation patterns of an array on a parabolic arc, divided into
two subarrays and scanned to 400: 10 elements in each subarray; pro-
jected aperture on Y axis, 9.0X; focal length of the parabola, f = 47K
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Fig. 20f - Radiation patterns of an array on a parabolic arc, divided into
two subarrays and scanned to 500: 10 elements in each subarray; pro-
jected aperture on Y axis, 9.07K; focal length of the parabola, f = 47K

36

0o

LLIJCE

-J
Li
07-

0E

02

GE
LD

UiF-

Cc
dI

07

)-#-*4( WITH CORRECT PHASE STEERING
- WITH APPROXIMATE PHASE STEERING



NRL REPORT 7856

FE

02

2:

GE
CD

Li

GE

UJ
07

*-*-*- WITH CORRECT PHASE STEERING
- WITH APPROXIMATE PHASE STEERING

""""""""'"""" ... 1' 
-70 -50 -30 -10 10 30 50

RNGLE FROM BRORDSIDE(DEGREES)

Fig. 20g - Radiation patterns of an array on a parabolic arc, divided into
two subarrays and scanned to 600: 10 elements in each subarray: pro-
jected aperture on Y axis, 9.0X; focal length of the parabola, f = 47K
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Fig. 21 - Loss in gain in a parabolic arc array due to phase errors introduced by
simplified phase steering when the array is divided into M subarrays: projected
aperture on Y axis, 9.07K; focal length of the parabola, f = 47K
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CONCLUSIONS

In this report, we have presented an approximate technique that simplifies the hard-
ware and software necessary for phase control of conformal arrays on a general surface.
Analytical and computed results are presented for the tecnique as applied to arrays on
circular and parabolic curves. The results show that in many practical cases the approxi-
mate technique can be used with negligible degradation in array performance.
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Appendix A
DETERMINATION OF SUBARRAY ELEMENT COORDINATES

In Fig. Al, note that to obtain an equation of the parabolic curve in the subarray
coordinate system it is first necessary to translate the origin to (X', Y') and then ro-
tate the coordinates by an angle a. These coordinate transformations result in the re-
lations

X = X. cosa - Y, sina + X'

Y= Xs sina + Y -Y'

(Al)

(A2)

YS

Fig. Al - Geometry of a conformal array on a parabolic
curve, divided into two subarrays

Substituting these relations for X and Y in the equation defining the curve (Y2 = 4fx)
and rearranging the terms, we obtain the following equation for the parabola:

X 2 + X- .A+ Y 2 cos2a = 0 .
\ tana tan 2a cos3a/ S 4 sin2 a

(A3)
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If Ysn is the Y. coordinate of the nth element in the subarray, the X, coordinate
X8 n of this element can be obtained by solving Eq. (A3) for Xs by substituting Y, = Y,,.
Only one of the two solutions is the correct value, given by (Eq. (33) in text)

Ysn + YA { 1 sin 4 - 4Y8 o sin2YY (A4)S, tana 2 sin30a \ -k /
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